

Cairo University Institute of Statistical Studies and Research

Final Exam: StatM 606
Multivariate Statistical Analysis

Date: Saturday 6-6-2015

time: 3:00 - 6:00

Part I: Compulsory(10 marks)

Choose the correct answer from the following

1) Any linear combination of a multivariate normal random vector X is distributed according to:

A) multivariate Gamma distribution	B) Wishert distribution
C) multivariate Normal distribution	D) Hotling T ² distribution

2) The covariance matrix of a multivariate distribution for a p-dimensional random vector have p variances and:

A) (p-1) covariances	B) p(p-1) covariances
C) 1/2 p(p-1) covariances	D) 1/4 p(p-1) covariances

3) The distribution of any subset of the multivariate normal random vector X is distributed according to:

A) multivariate Gamma distribution	B) Wishert distribution
C) multivariate Normal distribution	D) Fisher distribution

4) The covariance matrix of a multivariate distribution must be:

A) semi positive definite matrix	B) symmetric positive definite matrix
C) singular matrix	D) symmetric matrix

5) A set of random variables that are uncorrelated, are independently distributed iff they are distributed according to:

A) Hotling T ² distribution	B) bivariate Normal distribution
C) normal distribution	D) Hotling T ² distribution

Part II: Answer only three questions from the following

Question 1 (20 marks)

- A) Consider a family that has four children and let X_1 represents the number of girls in the first two children and X_2 represents the number of girls in the last three children. Find
 - i) The joint distribution of X_1 and X_2 .
 - ii) The conditional distribution of X_1 given that $X_2 = 2$.
- B) Consider the bivariate distribution with joint probability density function

$$f(x_1, x_2) = \begin{cases} 2 & 0 < x_1 < x_1 < 1 \\ 0 & otherwise \end{cases}$$

- i) Find the marginal distribution of both X₁ and X₂.
- ii) Discuss the independence of X_1 and X_2 .

Question 2 (20 marks)

A) Let X be a p-dimensional random vector with mean vector μ , variance-covariance matrix Σ and correlation matrix ρ where

$$X = [X_1, X_2, \dots, X_p]', \mu = [\mu_1, \mu_2, \dots, \mu_p]', \Sigma = \begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1p} \\ \vdots & \ddots & \vdots \\ \sigma_{p1} & \cdots & \sigma_{pp} \end{bmatrix}$$
 and

$$\boldsymbol{\rho} = \begin{bmatrix} 1 & \cdots & \rho_{1p} \\ \vdots & \ddots & \vdots \\ \rho_{p1} & \cdots & 1 \end{bmatrix}.$$

- i) Show that $E[(X \mu)(X \mu)'] = E[XX'] \mu \mu'$
- ii) Let **D** be a diagonal martix whose diagonal elements are the standard deviations of the random vector X, show that $\Sigma = D \rho D$
- iii) If $X = [X_1, X_2, X_3]$, obtain the matrix **D**, the correlation matrix ρ and find

Var
$$(2X_1 - 5X_2 - X_3)$$
 given $\Sigma = \begin{bmatrix} 25 & 2 & -3 \\ 2 & 4 & 1 \\ -3 & 1 & 9 \end{bmatrix}$.

B) Let S be the sample covariance matrix given by

$$\mathbf{S} = \begin{bmatrix} S_{11} & \cdots & S_{1p} \\ \vdots & \ddots & \vdots \\ S_{p1} & \cdots & S_{pp} \end{bmatrix}$$

where
$$S_{ij} = \frac{1}{n-1} \sum_{r=1}^{n} (X_{ri} - \overline{X}_i)(X_{rj} - \overline{X}_j)$$
, $\overline{X}_i = \frac{1}{n} \sum_{r=1}^{n} X_{ri}$ is the sample mean and

n is the sample size. Show that the sample covariance matrix S is an unbiased estimator of the population covariance matrix Σ .

Question 3 (20 marks)

A) Let X be a p-dimensional multivariate normal random vector with mean vector μ , and variance-covariance matrix Σ where

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_p \end{bmatrix}', \, \mathbf{\mu} = \begin{bmatrix} \mu_1, \mu_2, \dots, \mu_p \end{bmatrix}', \, \mathbf{\Sigma} = \begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1p} \\ \vdots & \ddots & \vdots \\ \sigma_{p1} & \cdots & \sigma_{pp} \end{bmatrix}$$
 and

Assume that X is divided into two submatrices $X^{(1)}$ and $X^{(2)}$, μ is divided into $\mu^{(1)}$ and $\mu^{(2)}$ and the covariance matrix Σ is divided into $\Sigma_{11} = \text{Cov}(X^{(1)}, X^{(1)})$, $\Sigma_{12} = \text{Cov}(X^{(1)}, X^{(2)})$, $\Sigma_{21} = \text{Cov}(X^{(2)}, X^{(1)})$ and $\Sigma_{22} = \text{Cov}(X^{(2)}, X^{(2)})$. Show that the conditional distribution of $X^{(1)}$ given $X^{(2)} = x^{(2)}$ is distributed according to the multivariate normal distribution with mean vector and covariance matrix given by $\mathbb{E}[X^{(1)}/X^{(2)} = x^{(2)}] = \mu^{(1)} + \Sigma_{12} \Sigma_{22}^{-1} (x^{(2)} - \mu^{(1)})$, and $\mathbb{Cov}[X^{(1)}/X^{(2)} = x^{(2)}] = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$.

B) Given a 5-dimensional vector $\mathbf{X} = [X_1, X_2, ..., X_5]'$ with mean vector

$$\mu = [1, -2, 4, 0, 3]' \text{ and covariance } \Sigma = \begin{bmatrix} 8 & 2 & 3 & 1 & 0 \\ 2 & 5 & -1 & 3 & 1 \\ 3 & -1 & 6 & -2 & -1 \\ 1 & 3 & -2 & 7 & -2 \\ 0 & 1 & -1 & -2 & 9 \end{bmatrix}.$$

Let $X^{(1)} = [X_1, X_2, X_3]', X^{(2)} = [X_4, X_5]'$ and $X = [X^{(1)}, X^{(2)}]'$.

- i) Find $E(X^{(1)})$ and $E(X^{(2)})$.
- ii) Find $Cov(X^{(1)}, X^{(1)})$, $Cov(X^{(1)}, X^{(2)})$, $Cov(X^{(2)}, X^{(1)})$, and $Cov(X^{(2)}, X^{(2)})$.

Question 4 (20 marks)

A) Let X be a p-dimensional random vector distributed according to the multivariate normal distribution with mean vector μ , and variance-covariance matrix Σ where

$$\boldsymbol{X} = \begin{bmatrix} X_1, X_2, \dots, X_p \end{bmatrix}', \boldsymbol{\mu} = \begin{bmatrix} \mu_1, \mu_2, \dots, \mu_p \end{bmatrix}', \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1p} \\ \vdots & \ddots & \vdots \\ \sigma_{p1} & \cdots & \sigma_{pp} \end{bmatrix}.$$

Let Y = C X where C is a nonsingular squared matrix ($C = [c_{ij}]$, i,j=1,2,...,p). Show that Y is distributed according to the multivariate normal distribution with mean vector $C \mu$ and covariance matrix $C \Sigma C'$.

B) Let
$$X \sim N_4(\mu, \Sigma)$$
, where $\mu = [5, 5, 10, 10]'$ and $\Sigma = \begin{bmatrix} 10 & 4 & 4 & 2 \\ 4 & 20 & 10 & 10 \\ 4 & 10 & 20 & 8 \\ 2 & 10 & 8 & 20 \end{bmatrix}$

Find the marginal distribution of $X^{(1)} = [X_1, X_4]'$ given $X^{(2)} = [X_2, X_3]' = [5, 5]'$.

Best Wishes and good luck

Dr. Mohamed Sabry