تمهیدی ماجستیر	الفصل الدراسى الاول 23-01-2010	معة القاهرة
الزمن 3 ساعات	مادة نماذج خطية STATA 611	هد الدراسات و البحوث الاحصائية

Q1): If
$$Y = (y_1 \ y_2 \ y_3)'$$
 is a random vector such that:

$$\mathbf{E}(Y) = \begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix}, \text{ cov } (Y) = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$

Let
$$Z = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} -15 \\ -18 \end{pmatrix}$$

- i) Determine E(Z), cov (Z), E(ZZ')
- ii) Determine the mean and the variance of z
- iii) Determine the covariance between z_1 and $z_2 + z_3$

iv) Find the expectation of
$$Q = Y'AY$$
 where $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$

Q2): Suppose (y_{ij}) is a collection of independent random variables having a common unknown variance σ^2 and expectation:

$$E(y_{ijk}) = \mu + \beta_i + \beta_j$$
 where $1 \le i \le j \le 3$, $k = 1, 2$

And $\beta = (\mu, \beta_1, \beta_2, \beta_3)$ is completely unknown.

Answer the following:

- a) Determine dim Ω .
- b) Determine an (n x m) matrix U such that: $E(Y) = U \varphi$, $\varphi \in \mathbb{R}^m$ is a parameterization for E(Y).
- c) For each statement below that constitutes a valid linear hypothesis on β , write out an equivalent linear hypothesis on φ for your parameterization in part (b).

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0$$
 , $H_0: \beta_1 - 2\beta_2 - \beta_3 = 0$
 $H_0: 2\beta_1 + \beta_3 = 0$.

rthat:

$$E(y_{ij}) = \mu + \alpha_i$$
 $i = 1,...,3$ $j = 1,...,n_i, n_1 = 3, n_2 = 1, n_3 = 2$

- a) Write the model in the matrix form and determine dim Ω
- b) Which of the following parametric function can be estimated
 - i) $\mu + \alpha_1$, ii) $\alpha_1 + \alpha_2 2\alpha_3$, iii) α_1 , iv) $\alpha_1 + \alpha_2$
- c) For one of the estimable parametric function in part (c), find its estimation and its BLUE.
- e) Is the following function is testable? Write the formula of the test.

$$_{i)H_{o}}$$
: $\alpha_{1} = \alpha_{3}$

ii)
$$H_0$$
; $\alpha_2 = 2\alpha_3$

Q4): Assume $Y = (y_1, ..., y_4)$ are independent and normally distributed random variables having a common unknown variance σ^2 and expectation:

$$E(y_1) = 4 \beta_1 - \beta_2$$

$$E(y_2) = 3 \beta_1 - \beta_2$$

$$E(y_3) = 4 \beta_1 - \beta_2$$

$$E(y_4) = \beta_1$$

Where $\beta = (\beta_1, \beta_2)$ is a unknown parameter vector satisfying $\beta_2 - 2\beta_1 = 0$.

Let, $\hat{\beta}$ be gm for β , let D be such that $cov(\hat{\beta}) = \sigma^2 D$, and let X, Δ be defined in the usual way. Do the following:

- a) Write out X, Δ' ., b) Show that β is an estimable parametric vector.
- c) Is $\hat{\beta}$ unique? Why? , d) Determine $m = \dim \Omega$.

- e) Determine D.
- f) Determine cov ($\hat{\beta}_1$ $3\hat{\beta}_2$, $\hat{\beta}_1$ + $2\hat{\beta}_2$).
- g) For the outcome Y = (-2, 5, 4, 8) on Y, determine estimates for β_1 and eta_2 and σ^2
 - h) Using the outcome in part (g), place a 95% C I of $2\,\beta_1$ $3\,\beta_2$

مع أطيب التمنيات بالنجاح

المادة : Stat A 611

امتحان الترم الثاني

جامعة القاهرة

الزمن : ثلاث ساعات

للعام الجامعي ١٠١٥/٢٠١٤

معهد الدراسات والبحوث الاحصائية

الفرقة: تمهيدي ماجستير احصاء

Answer of the following questions.

1- Consider the following data

Row	Column			
	1	2	3	4
1	9,10	10,15	8,9	10.8
2	10,12	10,11	11,9	14,12
3	16,14	12,15	14,19	20,17

Analyze the above data assuming

- i) Row random and column fixed.
- ii) Both Random
- iii) Both fixed.

In each case write the models sketch the design matrix and Ω , EMSE, do all proper tests. Write the sum square using projection notations.

(27 Markets)

2- Consider thee factor factorial experiment with a level of factor A,b level of factor B,c level of factor C all effects are random, assume all interaction exists. Write the model and EMSE test $\sigma_c^2 = 0$

(16 Markets)

3- Consider the following model

$$E(y_1) = \theta_1$$
, $E(y_2) = \theta_1 + \theta_2$, $E(y_3) = 2\theta_1 - 2\theta_2$, $E(y_4) = 3\theta_1 + \theta_2$.
 $y' = (3, 4, -1, 2)$.

- i) Find the class of all unbiased estimators of θ_1 . is the BLUE of θ_1 in the class ? Check .
- ii) Write X and $\,\, heta\,\,$ and show that $\, heta\,\,$ is estimable, find $\,\hat{ heta}\,.$
- iii) Consider $2\theta_1 \theta_2 = 0$

Write the model in matrix notation , show X, Δ , Ω . Is θ estimable parametric vector, is $\hat{\theta}$ is uniquely defined? Why? Determine $\operatorname{cov}(\hat{\theta}_1 - \hat{\theta}_2, 2\hat{\theta}_1 + \hat{\theta}_2)$ Determine the correlation between $\hat{\theta}_1$ and $2\hat{\theta}_1 + \hat{\theta}_2$ Determine estimates for θ_1 , θ_2 and σ^2 . Place 95% C.I on $3\theta_1 - \theta_2$

(27 Markets)