Answer the Following Questions:

- 1- Name the distributions, with its parameter(s), of the following:
- i) $(\underline{X} \underline{\mu}_0)' \Sigma^{-1} (\underline{X} \underline{\mu}_0)$, where $\underline{X} \sim N_P(\mu, \Sigma)$ and Σ has rank p.
- ii) $\sum_{r=1}^{n} \underline{X}_{r} \underline{X}_{r}^{'}$, where the *p* component vectors \underline{X}_{r} ; r=1,2,...n are independently distributed as $N_{p}(\mu_{p},\Sigma)$.
- iii) C'WC, where $W \sim W_P(n, \Sigma, M)$ and C is any $(p \times q)$ matrix of constants.
- iv) $\frac{n-p+1}{np} T_p^2(n)$, where $T_p^2(n) = k(\underline{X} \underline{\mu}_0)'S^{-1}(\underline{X} \underline{\mu}_0)$, $\underline{X} \sim N_p(\underline{\mu}, \frac{1}{k}\Sigma)$, k is scalar, $nS_{\underline{X}} \sim W_p(n, \Sigma_{\underline{X}})$, and $\underline{X} \& nS_{\underline{X}}$ are independent with n > p-1.
- v) $\frac{n-m}{(n-1)m} F^2$, where $F^2 = n(C'\overline{X} \underline{\phi})'(C'SC)^{-1}(C'\overline{X} \underline{\phi})$, $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$, n is the sample size, S is the sample variance covariance estimate of Σ , C is a given matrix of order $(p \times m)$ say of rank m and n > m, $\underline{\phi}$ is a given vector of constant.
- 2- Prove that: If $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$ and Σ has rank p, so that Σ^{-1} exists, then $(\underline{X} \mu)' \Sigma^{-1} (\underline{X} \mu) \sim \chi^2_{(p)}$.
- 3- Suppose $\underline{X'} = [X_1, X_2, ..., X_p]$ is a p-dimensional random variable with mean $\underline{\mu}$ and covariance matrix Σ . Suppose also that $Y_j = \underline{a}_j^t \underline{X}$ is the j^{th} principal component, where \underline{a}_j is the eigenvector associated with the j^{th} largest eigenvalue. Prove that Y_1 and Y_2 are uncorrelated implies that $\underline{a}_2^t \underline{a}_1 = 0$.

- 4- Using the power method for finding the eigenvalues and eigenvectors, find:
 - i- The first principal component of the sample covariance matrix $S = \begin{bmatrix} .9595 & .7781 \\ .7781 & .7736 \end{bmatrix}$.
 - ii- The amount explained by the first principal component.
 - iii- The residual covariance matrix.
 - iv- The correlation coefficients between the first principal component and the variables X_1 and X_2 .
- 5- Prove that

$$-\frac{1}{2}[(\underline{X} - \underline{\mu}^{(1)})' \Sigma^{-1} (\underline{X} - \underline{\mu}^{(1)}) - (\underline{X} - \underline{\mu}^{(2)})' \Sigma^{-1} (\underline{X} - \underline{\mu}^{(2)})]$$

$$= \underline{X}' \Sigma^{-1} (\underline{\mu}^{(1)} - \underline{\mu}^{(2)}) - \frac{1}{2} (\underline{\mu}^{(1)} + \underline{\mu}^{(2)})' \Sigma^{-1} (\underline{\mu}^{(1)} - \underline{\mu}^{(2)})$$

6- Consider two multivariate normal populations with equal covariance matrices, namely $N(\underline{\mu}^{(1)}, \Sigma)$ and $N(\underline{\mu}^{(2)}, \Sigma)$. Let \underline{X} be a random observation, then find the distribution of

$$U = \underline{X}' \sum^{-1} (\underline{\mu}^{(1)} - \underline{\mu}^{(2)}) - \frac{1}{2} (\underline{\mu}^{(1)} + \underline{\mu}^{(2)})' \sum^{-1} (\underline{\mu}^{(1)} - \underline{\mu}^{(2)}).$$

On the assumption that \underline{X} is distributed according to $N(\mu^{(1)}, \Sigma)$.

Good Luck Dr. Sahar Niazy