

Cairo University Institute of Statistical Studies & Research Department of Computer & Information Sciences CS-634 Networks Security January 2017

Time: 3 hours Imane Fahmy

Answer all the following questions in your answers sheet:

Question 1: Choose the correct answer to complete the following sentences and write its corresponding letter (a), (b), (c) or (d) in your answers sheet: [10 marks]

1-	- Most symmetric block ciphers are based on a Cipher struct		ructure.		
	(a) Caesar	(b) human	(c) Feistel	(d) substitution	
2-	The message must be decryp	ted at each switch to re	ad address in	encryption.	
	(a) End-to-end	(b) link	(c) asymmetric	(d) none	
3-	- Traffic padding protects against attacks.				
	(a) passive	(b) active	(c) DoS	(d) (b)&(c)	
4-	Ciphers need to completely obscure statistical properties of original message by				
	(a) Confusion	(b) diffusion	(c) (a)&(b)	(d) digital signature	
5-	Cipher is the main concept upon which Feistel cipher.				
	(a) Transposition	(b) Invertible product	(c) Asymmetric	(d) Shift	
6-	The effective key size of trip	le DES is bi	ts length.		
	(a) 112	(b) 64	(c) 32	(d) 256	
7-	Among the advantages of authentication without encryption of message:				
	(a) cheaper	(b) faster	(c) easier	(d) (a), (b) & (c)	
8-	The Internet Protocol security IPSec services are implemented at the layer.				
	(a) TCP	(b) above TCP	(c) network	(d) application	
9-	Handshake failure results in	alert by	SSL alert protocol.		
	(a) Negotiation	(b) fatal	(c) warning	(d) no	
10-	10- The Secure Shell SSH protocol provides secure service.				
	(a) Remote logon	(b) key exchange	(c) encryption	(d) digital signature	

Question 2: Indicate whether the following sentences are True (T) or False (F) and write (T) or (F) and correct the false sentences in your answers sheet: [10 marks]

1- DES round function uses a round key with 128 bits length. 2- AES inputs a 128-bit data block and assumes 64 bits key length. 3- DoS attacks require attacking the servers and the network infrastructure.) 4- Worms are malware that require some sort of user interaction to infect user's device. 5- An IP spoofing attack is a passive receiver that records a copy of all your packets. 6- In vulnerability_DoS attack, attackers send huge number of packets to the target host. 7- Secure Hash Algorithm SHA-512 uses 1024 bits data blocks to produce 512 bits digest. 8- Encryption could protect against IP spoofing attacks.) 9- Pretty Good Privacy PGP compresses message after signing but before encrypting.) 10-Hash function collision-free property implies that it is computationally infeasible to find data mapping to specific hash.)

Question 3: Design and Sketch the following questions:

- Design the encryption/decryption diagrams between two communicating entities: Source A and destination B for the following schemes: [6 marks]
 - a. Public key encryption
 - b. Digital Signature
- Sketch the Secure Socket Layer SSL record protocol operation steps applied on application data. [5 marks]
- 3) Given the cryptographic expression:

 $C = E(K, [M || E(PR_a, H(M))])$ provides: authentication, digital signature and confidentiality for a plaintext message M, where K is the secret key used for encryption. [6 marks]

- a) Draw a diagram to generate the ciphertext C at the source and to verify the ciphertext C at the destination
- b) Which part of the given expression provides digital signature?
- 4) If Alice and Bob chose to secure their exchanged mails using the Pretty Good Privacy PGP algorithm. Draw a diagram to help them secure their message M according to their security requirement as follows: [6 marks]
 - a) Confidentiality only.
 - b) Authentication only.
- 5) Assume A and B, share a common secret key K_{AB} . When A has a message M to send to B, it calculates the Message Authentication Code MAC as a function of the message and the key: $MAC_M = F(K_{AB}, M)$. The message plus code are transmitted to the intended recipient. The recipient performs the same calculation on the received message, using the same secret key, to generate a new message authentication code. The received code is compared to the calculated code. Draw the MAC scheme between A and B. [5 marks]

Question 4: Solve the following problems:

[30 marks]

- Given the binary plaintext P: 01001111000101001110001010 bit stream and the encryption repetitive key pattern k: 01011 used by *Vernham* cipher, deduce the ciphertext C generated by the source then verify the recovery of the plaintext P at the destination using the same repetitive key pattern for decryption. [4 marks]
- A product cipher encryption technique based on a *Caesar* shift substitution cipher followed by a *Rail Fence* transposition cipher was used to generate the following ciphertext:
- C= WHQPDWHDHKHHBWKJW. Decrypt the original message plaintext P. [4 marks]
 3) Using Diffee-Helman key exchange, Alice and bob agreed on global parameters: a large prime integer or polynomial q=353 and e=17 primitive root < q. Alice and Bob then generate their secret values: x_a=11, x_b= 191. Then, they should generate their public keys: y_a, y_b to share on a public domain based on the global parameters and their private values. Finally, when Alice and Bob initiated their communication session, they computed their session key K_{a,b}. [12 marks]
 - A. Show all D-H algorithm steps used to make all keys computations.
 - B. What is the secret keys selection condition that Alice and Bob must respect?
 - C. Compute Alice's and Bob's public keys.
 - D. Compute their session key $K_{a,b}$ at both points: Alice and Bob. Is it the same value?
 - E. What could be the equation used by a cryptanalyst in order to deduce the secret value?
 - F. What is the attack that D-H key exchange scheme may suffer from?
- 4) Perform encryption and decryption using RSA algorithm, for the following parameters: prime numbers p = 31; q = 13, e = 3 and message input M = 95. [10 marks]
 - a) Show all RSA algorithm computations steps.
 - b) Sketch the encryption/decryption process showing the resulting public and private keys used to encrypt M into ciphertext C at source then decrypt C into M at destination.

Best wishes

[28 marks]